3.694 \(\int \frac{A+B \cos (c+d x)}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=101 \[ \frac{2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d} \]

[Out]

(2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*B*Sqrt[Cos[c + d*x]]*EllipticF[(c
 + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*B*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0867673, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3238, 3787, 3769, 3771, 2641, 2639} \[ \frac{2 A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/Sqrt[Sec[c + d*x]],x]

[Out]

(2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*B*Sqrt[Cos[c + d*x]]*EllipticF[(c
 + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*B*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)}{\sqrt{\sec (c+d x)}} \, dx &=\int \frac{B+A \sec (c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=A \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+B \int \frac{1}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{1}{3} B \int \sqrt{\sec (c+d x)} \, dx+\left (A \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{2 A \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{1}{3} \left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 A \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 B \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.127173, size = 76, normalized size = 0.75 \[ \frac{\sqrt{\sec (c+d x)} \left (6 A \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+B \left (\sin (2 (c+d x))+2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/Sqrt[Sec[c + d*x]],x]

[Out]

(Sqrt[Sec[c + d*x]]*(6*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + B*(2*Sqrt[Cos[c + d*x]]*EllipticF[(c +
 d*x)/2, 2] + Sin[2*(c + d*x)])))/(3*d)

________________________________________________________________________________________

Maple [A]  time = 2.537, size = 229, normalized size = 2.3 \begin{align*}{\frac{2}{3\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -4\,B\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+3\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -B\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +2\,B \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x)

[Out]

2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+3*A*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*sin(1/2*d*x+1/
2*c)^2*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*
d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B \cos \left (d x + c\right ) + A}{\sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \cos{\left (c + d x \right )}}{\sqrt{\sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))/sqrt(sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/sqrt(sec(d*x + c)), x)